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Abstract – 

The construction site is prone to a considerable 

number of accidents due to its dense and complex 

nature. Accidents due to falling from opening at the 

construction site are leading reasons for severe 

injuries and sometimes fatalities. Openings and Holes 

are made on floors and roofs during the building 

construction or destruction.  Despite being aware of 

the hazards associated with openings, gaps, and holes 

when working at heights, many workers fail to cover 

the openings or remove the covers for ease of work. 

The current inspection procedure relies on manual 

practices that are error-prone, time-consuming, 

expensive, and difficult for a site manager to monitor. 

Therefore, the authors propose a pull-reporting 

approach to resolve this issue by utilizing a computer 

vision detector model embedded in the android 

mobile to facilitate the safety manager. The proposed 

application uses YOLOv4 trained weights on a 

custom dataset obtained from the recorded videos at 

the Korean Scaffolding Institute with various view 

angels and various degrees of occlusion and data 

crawling techniques. The weights are then deployed 

on edge devices using TensorFlow API, Java 

programming, and maintain a real-time database of 

unsafe behavior. The developed system can identify, 

classify, and record the fully opened openings (FOO) 

and partially opened openings (POO) at the 

construction site along with geo-coordinates details in 

real-time.   

Keywords – 

 Edge Computing; Worker Driven Approach; 

Construction Hazards; Trade Worker Safety; Safety 

Monitoring 

1 Introduction 

In recent decades, the construction industry has 

grown, resulting in higher firm profits, financial 

accessibility, and commodity demand. Despite its 

prominence, it has long been recognized as one of the 

world's most dangerous industries due to its severe 

accident rate than other industries [1]. Falls from heights 

(FFH) are a severe construction industry issue [2]. 

According to research, FFH is responsible for around 48 

percent of major injuries and 30 percent fatalities. Most 

FFH events occur due to the fully opened opening (FOO) 

and partially opened opening (POO) at the temporary 

supporting platforms, e.g., scaffolding and on-ground 

openings. There are several safety regulations and 

procedures in place to protect workers' falls from height; 

for instance, the gaps, holes, and openings should be 

covered so that the person working near the edges could 

be safe during his task.  

Even though covering the openings and gaps is a legal 

requirement and employees are aware of their risk of 

falling, workers have shown a reluctance to utilize these 

regulations, as could be understood by many accidents 

that already happened in construction. Extra efforts 

besides their tasks and the constraints it imposes on 

mobility have been identified as the reasons for non-

compliance. 

The detection of wall openings is similar to the 

detection of slab holes. The location of the wall element 

must be considered in the special situation: whether it is 

an interior or exterior wall [3]. To avoid any fall, the wall 

opening should also be protected [3]. Construction and 

safety managers require realistic means to monitor and 

ensure that the openings, holes, and gaps are entirely 

covered with the desired strength material. On the other 

hand, the safety inspection procedure can be time-

consuming and intermittently commenced because 

traditional practices rely on the push-inspection approach 

or manual inspection process where the safety managers 

enforce the safety rules through top to bottom monitoring 

style. Correspondingly, safety rule compliance about the 

hole, gap, and opening covering is challenging if done 

with the traditional practices, and the possibility of falls 

from height remains a severe hazard. Therefore, this 

paper presents an intuitive pull-reporting approach which 

means that the worker is involved in this process to report 
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to the safety manager by using an android-based 

application to automate the manual inspection process.  

2 Literature Review 

Construction sites have a distinct, dynamic, and 

complex working environment and non-standardized 

design and work processes that may expose employees to 

hazards. Researchers and experts in construction safety 

and health management have put a lot of effort into 

preventing falls from height[2].  

Proactive and Passive strategies can be used to 

prevent and minimize the seriousness of injuries 

generated from FFH [4]. Preventative methods that focus 

on safety training and education are known as proactive 

methods. The creation of short-term training programs 

and implementation of specific fall protection training 

programs are two examples. Passive strategies are based 

on the analysis of fall accident data to build future 

preventive measures. For instance, using accident records 

and data from routine safety inspections to identify 

factors contributing to deadly occupational falls 

[4]. Fixed safety equipment (e.g., guardrails and opening 

covers), fall arrest systems (e.g., full-body harness), and 

travel restraint systems (e.g., belts); are FFH preventative 

measures generated from an examination of accident 

data. On the contrary, enforcing rules may boost the 

usage of safety protective equipment and is said to be a 

reactive strategy to address the safety issue. 

Several researchers have been attracted to use 

computer vision in their fields, such as in the construction 

industry for worker safety monitoring, progress 

monitoring, and worker action recognition to automate 

the manual procedures at the construction site [4–9]. 

Therefore, computer vision-based methods have become 

widely used in project progress monitoring [8], 

productivity analysis [5, 6], and safety monitoring [10]. 

Recently researchers have been focusing on computer-

vision-based safety monitoring of the worker. Khan et al. 

[1] proposed a Mask R-CNN-based detection algorithm 

to check the worker's safety while working on the mobile 

scaffolding and achieved an overall 86% accuracy on the 

testing dataset. Weili Fang et al. [10] used Mask R-CNN-

based algorithm for the recognition of the unsafe 

behavior of construction workers traversing structural 

support during the construction. This approach first 

detects and segments the worker and support, and then an 

overlapping detection module is used to find a 

relationship between workers and structural support. [10] 

During the testing of the algorithm, they have achieved 

precision and recall of 75% and 90%, respectively.  

Nath et al. [6] develop three Deep learning (DL) 

models on YOLO architecture for the detection of PPEs 

(hard hats and safety vests) from images. KNN search 

optimization technique was created by Heidari et al. [11] 

to compute anchor positions that fulfill fall clearance and 

swing hazard.  

Holes that pose a potential safety hazard(s) can be 

found inside buildings, on work platforms, on roofs, 

during roadway/bridge construction, in shops or 

warehouses, and other outdoor working environments. 

Roof ducts/drains, skylights, unfinished stairs or missing 

steps, unsupported ceilings/walkways, and manholes are 

some examples of holes/openings or gaps found on 

construction projects. Unprotected holes in the floor, 

deck, or roof have caused several serious injuries. 

However, falls through holes can be easily avoided with 

proper planning and the personal attention of the trade 

workers and safety manager. 

3 System Development 

This section presents the dataset preparation, model 

training, deployment on devices, and firebase database.  

3.1 Dataset Preparation 

A large amount of digital image data with various 

patterns is needed to train a vision intelligence-based 

detection model. As vision intelligence approaches 

emerge in the construction sector, obtaining labeling 

datasets from open-source websites remains difficult. 

Therefore, images of the hatch opening with enough 

variations were collected from three sources; (1) Google 

search engine, (2) random frames from YouTube videos, 

and (3) recorded videos in a Korean Scaffolding Institute. 

In this paper, different types of keywords for crawling 

techniques are used, such as "hole opening", "hatch 

opening", "partial opening on construction", "opening on 

construction site". As another source for image data 

collection, multiple videos have been recorded at the 

Korean Scaffolding Institute for FOO and POO in Seoul, 

Korea. Random frames were extracted using Fast 

Forward MPEG (Ffmpeg) tool in python. Data cleaning 

is an important step for the model's training; therefore, a 

two-step process is used for data cleaning to select the 

useful dataset to train, validate, and test the deep-learning 

model. The goal of the two-step process is to generate a 

useful dataset for the deep learning model. In the first step 

of data cleaning, unsuitable/unclear images such as 

incorrect exposure were removed.  

There are eight simple techniques for avoiding 

overfitting, but two of them were used in this study: the 

Hold-Out and Data Augmentation [12]. The Roboflow 

platform was used to pre-process and label the 852 

images. According to the Hold-out (data) technique, the 

total image data should be divided into train and test 

datasets. The common ratio is 80:20, but in this case, the 

Hold-out technique was used with a ratio of 87:8:5 for 

training, testing, and validation, respectively. Thus, 

image data from the training set of 1657 images, a test set 
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of 163, and a validation set of 80 images were retrieved. 

Data augmentation techniques such as crop, rotation, 

shear, hue, saturation, brightness, and exposure were 

applied to the training set to increase the dataset [12]. As 

a result of the augmentation process, the total number of 

image data after the augmentation is 1900 labeled images 

across the two classes (1) Opening, (2) partial opening. 

The dataset's labeling can be seen in the picture below: 

 

Figure 1. Dataset Preparation 

3.2 Model Training 

Object detection with deep learning techniques has 

currently attracted many researchers worldwide, owing 

to its applications in our daily life. For example, business 

analytics, self-driving vehicles, face identification, and 

medical image analysis depend on object detection [13]. 

GPUs, CPUs, IoT devices, and embedded computers are 

needed to create these everyday applications. To detect 

FOO and POO on the construction site, the pre-trained 

YOLOv4 object detection algorithm is used. The blog 

[10] stated the rule of thumb is 1000 images for image 

recognition, but this number can be reduced significantly 

in the pre-trained model. The YOLO is implemented in 

Darknet, an open-source framework written in C 

language, and Compute Unified Device Architecture 

(CUDA) is used for parallel computation. Darknet 

establishes the network's fundamental architecture and 

serves as the basis for YOLO training. This architecture 

is simple, fast to set up, and supports both Graphical 

Processing Unit (GPU) and Central Processing Unit 

(CPU) computation [14]. The YOLO (You Only Look 

Once) network is an algorithm that operates to detect an 

object in a single stage. It processes images with a single 

CNN and can measure classification results and object 

location coordinates directly. The detection speed has 

been significantly improved thanks to end-to-end object 

positioning and classification [15]. 

YOLOv4 network uses CSPDarknet53 for the image 

features extraction and network training. [16]. After that, 

Path Aggregation Network (PANet) was applied as a 

neck network to improve the extracted features fusion, 

and the head of YOLOv3 is utilized to realize object 

detection. Fig. 2 shows the architecture of YOLOv4. The 

key modules of the YOLOv4-based FOO and POO 

detection model are as follows: 

• A convolution layer, a batch normalization layer, 

and a Leaky-ReLU activation function made up the 

CBL (Convolution, Batch Normalization, and 

Leaky-ReLU) module.  

• Both the CBL and CBM (Convolution, Batch 

Normalization, and MISH) modules extracted the 

features. The difference was that the CBM’s used 

MISH activation mechanisms instead of Leaky-

ReLU [17]. 

• By splitting low-level features into two sections and 

then fusing cross-level features, the CSP (Center 

and Scale Prediction) module could improve CNN's 

learning ability [18]. 

Figure 2. The architecture of YOLOv4 [19] 
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The POO and FOO detection based on YOLOv4; the 

main steps involved in the training are as follows: 

• As mentioned above, this paper uses a dataset from 

three sources; (1) Google search engine, (2) random 

frames from YouTube videos, and (3) recorded 

videos in a Korean Scaffolding Institute. All the 

images are uploaded to the Roboflow platform to 

label the dataset into two classes, "opening" and 

"partial opening," with the ratio of 87:8:5. 

• The batch size, learning rate, number of classes, 

mini-batch size, and the number of convolutional 

kernels in the previous layers are modified. For the 

detection of an object, the network input size was 

set to 416 pixels × 416 pixels, the learning rate set 

to 0.00065, batch size to 64, mini-batch size to 16, 

the step size to 8000-9000, filters to 21, momentum 

and decay rate to 0.949 and 0.0005, respectively. 

The parameters used in the configuration file of the 

YOLOv4 are shown in Table 1. At every 10,000 

steps, the training process produced several models; 

the best model fit was used in our testing and 

deployed on Android devices. The training, 

validation, and testing set were used for training, 

validation, and testing of the proposed model, 

respectively.  

 

Table 1. Parameters of FOO and POO detection model 

Parameters Values 

Input Size 416 x 416 

Batch Size 64 

Learning Rate 0.00065 

Momentum 0.949 

Decay 0.0005 

Iterations 4000 

Classes 2 

 

The Loss curve during training is depicted in Fig. 3, 

and it can be seen that the model learning performance 

was higher, and the convergence speed of the training 

curve was faster at the beginning of the FOO and POO 

detection. The blue curve represents the training loss or 

error on the training dataset. The mean average precision 

at the 50% Intersection-over-Union threshold (mAP@0.5) 

is indicated by the red curve that determines if the model 

generalizes successfully on a previously unseen dataset 

or validation set. The graph shows that the model has the 

highest mean-average-precision score of 89 percent map 

(best model) during training at 3600th iteration, and the 

final map reported as 87.7% on the last iteration. The 

slope of the training curve steadily decreased after the 

200 iterations in training. The number of training 

iterations and the training curve can be considered as 

inversely proportional as training iterations increase, the 

training curve decreases. 

 

Figure 3. Loss Curve 

3.3 Deployment on Devices 

This section describes the methodology for deploying 

the trained YOLOv4 model and converting the YOLOv4 

object detection model to TensorFlow Lite for on-device 

inference. TensorFlow Lite consists of tools used for 

machine learning on edge devices such as smartphones 

and IoT. TensorFlow Lite is the TensorFlow framework 

designed to visualize inference on small devices, meant 

to avoid a round-trip data computation to and from the 

server capability of real-time detection and work without 

internet connection. [20].  Fig .4 explains the process of 

FOO and POO object detection-based mobile 

applications. As we explained earlier about the dataset 

preparation and training, after that, the YOLOv4 based 

FOO and POO object detection model was deployed to 

an android application. There are two main steps to 

deploy a Deep Learning model on edge devices: 

• The first one is converting the model into 

TensorFlow Lite format; For the conversion of 

YOLOv4 (TensorFlow model) into TensorFlow 

Lite, the TensorFlow Lite (TfLite) converter is used. 

TfLite converter takes the YOLOv4 (TensorFlow) 

model as input and generates the TfLite model (an 

optimized Flat Buffer format identified by .tflite file 

extension). During conversion, the quantization is 

applied to reduce the model size because the 

android studio cannot deploy a model that is larger 

than 250MB.  

• The second essential step in the deployment is to 

Run inference. Inference refers to executing the 

model to make predictions based on input data, but 
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it requires Metadata. TensorFlow Lite metadata 

describes the model, including license words, input 

information (pre-processing), normalization, output 

information (post-processing), mapping labels. 

Normalization is a popular data pre-processing 

technique that converts values into a common scale 

without distorting differences in value ranges. As a 

result, the normalization parameter. In this case, the 

normalization parameters for each float model 

mean and standard deviation were 127.5. After that, 

the model is exported to an Android Studio[20]. 

•  

• Now the quantized model is exported into an 

Android Studio Integrated Development 

Environment (IDE). The application is built on top 

of an open-source platform with a TensorFlow 

backend that was cloned from the GitHub 

repository. We have modified both the back end and 

the visual front end. In the backend, the real-time 

Firebase Database is used to record the unsafe 

behavior of FOO and POO on the construction site. 

This application encourages workers to be involved 

in this process, called a worker Driven approach or 

Pull-Reporting Approach. Supposing that the 

worker walks around the construction site, opens an 

application, and reports any unsafe activity 

associated with FOO and POO. The application 

may also recognize a vertical opening as a hole, 

though this is strengthened in a wall opening that 

should also be protected [3]. This information will 

then be uploaded to a database with the worker's 

current location (longitude and latitude) 

The Geocoder API is used to determine the worker's 

current position using Geocoding process. The 

Geocoding process converts the addresses into latitude 

and longitude-based coordinates. These geocoded 

coordinates are further used for the placement of the 

markers on a map. The algorithmic component shows 

how the object identification and unsafe actions are 

uploaded to the Database using java language with 

android studio, as shown below: 

 

Table 2. Algorithm  

Title:  Pseudo Code for FOO and POO detection 

Input: Video Frames 

Output: Detect Unsafe Behavior with current 

location. 

1. Load the .tflite model and labels files from the 

assets folder. 

2. Set Minimum Confidence = 0.5 

3. Start Camera activity to get input. 

4. Extract Frame from the video. 

Fig. 4 Process flow of FOO and POO Detection 

Fig. 4 Process flow of FOO and POO Detection 
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5. While (frame != 0): 

 Send frame to Detector class: 

1) If (Detected result != null and Detected result 

confidence >= Minimum Confidence): 

i. Draw Rectangle on Detected frame 

ii. Get the Current Location of the Worker 

using Geocoder API 

iii. Get the Title of Detected Result  

iv. If (Detected Result Title == “Opening”): 

• Upload Detected frame with 

the current location of the 

worker to the Opening folder 

in Database. 

• Return to step 4. 

v. Else: 

• Upload Detected frame with 

the current location of the 

worker to the Partial Opening 

folder in Database.  

• Return to step 4. 

2) Else: 

• Return to step 4. 

6. Close an application to stop the process. 

First, to explain the algorithm, the TensorFlow Lite 

model is loaded, and the labels file from the assets folder 

to perform object detection. The detected result 

confidence is compared with the minimum set 

confidence that is 0.5.  The process of getting and passing 

frames to the Detector class operated continuously until 

the application close. The frames are being extracted 

from the video. An individual frame is passed to the 

Recognition function declared and defined in the 

Detector java class that returns the result. An algorithm 

compares the detected result confidence with the 

minimum confidence. The detector java class will 

process the frame if the detected result confidence is 

greater than the minimum confidence and will draw a 

rectangular box on the detected result. An application 

will get the worker's current location by using Geocoder 

API. Further, it checks whether the detected frame is 

labelled as "opening" or "partial opening" by comparing 

the label of the detected result. The detected result will 

be uploaded to the designated folder in the firebase 

database based on the mark, and this process will 

continue until the application is running. 

Both options are provided in an application such as 

video detection as well as static image detection. Fig. 5 

visualizes the four buttons, and if a worker clicks the 

gallery button, the gallery will open, and the user can pick 

an image; if the user clicks the camera button, the 

algorithm will identify the result and upload it to the 

designated folder with the current location of the Worker 

into Firebase database. Firebase notifies the worker that 

the data has been uploaded until the unsafe behavior has 

been registered.

 
Figure 5. Android-based application 

4 Results and Evaluation 

To check the feasibility of the proposed model, the 

validation set containing 80 images of fully opened 

openings (FOO) and partially opened openings (POO) 

were used. The results can be seen in Table 3 that 

presents the outcomes of the performance indicators used 
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to evaluate the proposed model. The qualified model has 

a recall of 82 percent and precision of 92.35 percent, with 

an overall mean average precision of 87.70 percent and 

an intersection over union of 76.40 percent (IoU). The 

test data produced promising results, and the model was 

chosen to detect data from actual construction sites. The 

results demonstrated that the model could achieve high 

precision on real-time data. 

Table 3. Performance Matrices of trained model 

Evaluation Indexes Test Results 

Precision 92% 

Recall 82% 

Average IOU 76.40% 

mAP 87.70% 

F1 Score 86% 

Average Loss 0.86 

5 Conclusion 

In this paper, the authors propose a pull-up reporting 

approach based on an android operating system to detect 

FOO and POO on the construction site to overcome the 

manual inspection process. YOLOv4 detector is trained 

on our custom pre-processed dataset and then later 

converted to the TensorFlow lite model by using 

TensorFlow API to deploy and perform inference on the 

edge devices. The qualified model shows that our 

developed application can perform better and facilitate 

the automation process of construction site management. 

The trained model has an F1 score of 86% percent, which 

shows how accurately our model performs predictions on 

the custom dataset. Moreover, a rewarding functionality 

and more case scenarios such as missing planks and 

missing guardrails would be added to the application to 

reward the worker who facilitates the safety manager in 

identifying risk at the construction site. 
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